Quantitative measurement of multifunctional quantum dot binding to cellular targets using flow cytometry.

نویسندگان

  • R A Smith
  • T D Giorgio
چکیده

Semiconductor nanocrystals such as quantum dots (QDs) are a potentially powerful resource in the fields of flow cytometry and fluorescence microscopy. QD size and fluorescence characteristics offer attractive features for use in targeted delivery systems and detection by flow cytometry. While quantitative measurements of a variety of fluorescent molecules are routinely performed, fluorophores for which no calibration standards exist, such as QDs, pose a problem for quantitation in flow cytometry. Our goal was to develop a targeted nanoparticle delivery platform as well as a corresponding method to accurately and quantitatively assess the performance of this system. We synthesized surface-modified QD probes targeted to cellular surface receptors and measured the MFI of the resulting cell-probe conjugates by flow cytometry. MFI was converted to mean equivalent R-PE intensity (MEPE) using standard calibration microspheres. Known concentrations of both R-PE and QD probes were measured by fluorometry to relate R-PE and QD fluorescence. Fluorometry results were then used to translate MEPE measurements to the number of bound QD probes. The targeted probes exhibited superior binding characteristics over unmodified and untargeted particles. This binding interaction was shown to be specific and mediated by the NGR targeting peptide tethered to the QD surface. The calibration method developed to assess this system proved successful at converting raw fluorescence data to quantitative probe binding values. We demonstrate the synthesis and performance of a highly modular nanoparticle system capable of targeted binding and fluorescent imaging. The calibration method implemented to quantify the performance of this system represents a potentially powerful tool to utilize truly quantitative flow cytometry measurements with an array of fluorescent molecules, including QDs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The development of quantum dot calibration beads and quantitative multicolor bioassays in flow cytometry and microscopy.

The use of fluorescence calibration beads has been the hallmark of quantitative flow cytometry. It has enabled the direct comparison of interlaboratory data as well as quality control in clinical flow cytometry. In this article, we describe a simple method for producing color-generalizable calibration beads based on streptavidin functionalized quantum dots. Based on their broad absorption spect...

متن کامل

Quantitative measurement of quantum dot uptake at the cell population level using microfluidic evanescent-wave-based flow cytometry.

The intracellular uptake of nanoparticles (NPs) is an important process for molecular and cellular labeling, drug/gene delivery and medical imaging. The vast majority of investigations into NP uptake have been conducted using confocal imaging that is limited to observation of a small number of cells. Such data may not yield quantitative information about the cell population due to the tiny samp...

متن کامل

A Novel Design of a Multi-layer 2:4 Decoder using Quantum- Dot Cellular Automata

The quantum-dot cellular automata (QCA) is considered as an alternative tocomplementary metal oxide semiconductor (CMOS) technology based on physicalphenomena like Coulomb interaction to overcome the physical limitations of thistechnology. The decoder is one of the important components in digital circuits, whichcan be used in more comprehensive circuits such as full adde...

متن کامل

Design of low power random number generators for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA.  Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...

متن کامل

Novel Defect Terminolgy Beside Evaluation And Design Fault Tolerant Logic Gates In Quantum-Dot Cellular Automata

Quantum dot Cellular Automata (QCA) is one of the important nano-level technologies for implementation of both combinational and sequential systems. QCA have the potential to achieve low power dissipation and operate high speed at THZ frequencies. However large probability of occurrence fabrication defects in QCA, is a fundamental challenge to use this emerging technology. Because of these vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cytometry. Part A : the journal of the International Society for Analytical Cytology

دوره 75 5  شماره 

صفحات  -

تاریخ انتشار 2009